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a b s t r a c t

In this work, the compressible governing equations for the hybrid Reynolds-averaged/
large-eddy simulations are formally derived by applying a hybrid filter to the Navier–
Stokes equations. This filter is constructed by linearly combining the Reynolds-average
(RANS) and large-eddy simulation (LES) operators with a continuous blending function.
The derived hybrid equations include additional terms that represent the interactions
between RANS and LES formulations. The relevance of these terms is investigated in flat-
plate turbulent boundary layer simulations and indicate that these additional terms play
a fundamental role in compensating for the turbulence that is neither modeled nor
resolved in the transition region between RANS and LES. Results also show that when
the additional terms are included, the calculations are not very sensitive to the blending
function implemented in the hybrid filter. In the contrary, when these terms are neglected
and a step function is implemented in the hybrid filter, nonphysical discontinuities are pre-
dicted in the flow statistics.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Hybrid Reynolds-averaged/large eddy simulation is a relatively new concept aimed at making possible complex high Rey-
nolds number turbulence simulations for engineering applications. It brings together two currently employed turbulence
modeling approaches: Reynolds-average Navier–Stokes (RANS) and large-eddy simulation (LES), and is motivated by the
inability of RANS models to predict complex unsteady flows [1], and the prohibitively high cost of LES in high Reynolds num-
ber wall-resolved simulations [2]. In general, the hybrid RANS/LES formulation can be interpreted as a model intended to
reduce the high cost of LES simulations. Although the idea of using RANS as a near-wall model for LES simulations can be
found in the early work of Schumann [3], hybrid RANS/LES models were not seriously consider until Spalart et al. [4] and
Speziale [5] explicitly introduced practical hybrid approaches.

In the approach of Spalart et al. [4], the Spalart–Allmaras RANS model [6] is modified to reduce the amount of turbulence
viscosity provided in regions of massive flow separation, while in regions of attach flow, RANS level of the modeled turbulent
viscosity is provided. This model was named detached eddy simulation (DES), implying that it should be used in flows where
massive flow separation controls the unsteady flow dynamics. DES has been successfully applied to a broad range of prob-
lems spanning complex engineering applications to canonical flows studies [1,7–12]. However, as any other model, DES has
advantages and disadvantages that compromise the accuracy of its predictions [9,13,14]. A characteristic limitation of DES is
. All rights reserved.
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its transition from RANS to LES, which is grid controlled. Here, grid refinements made to improve the description of the
geometry can dramatically interfere with the model transition, inducing inaccurate predictions. A correction for this latent
source of error have been proposed in a new version of this model [15], which still remains to be carefully explored.

A different hybrid RANS/LES approach was introduced by Speziale [5]. He proposed a formulation capable of bridging direct
numerical simulations (DNS) with RANS modeling with LES in-between, in what he referred to as very-large eddy simulations
(VLES). In this approach, the subgrid stress tensor (ss

ij) is computed by rescaling the RANS Reynolds stress tensor ðsR
ijÞ as
ss
ij ¼ asR

ij; a ¼ ½1� expð�bD=gÞ�n; ð1:1Þ
depending on whether the grid is fine enough to resolve turbulence scales. Speziale only suggested the form of the rescaling
factor (a) as function of the grid resolution (D) and the Kolmolgorov length scale (g); the constants b and n were left unspec-
ified. Other researchers proposed different formulations to implement this approach. Some examples are the limited numer-
ical scales (LNS) model of Batten et al. [16], the partially resolved numerical simulation of Liu et al. [17], the renormalization
group model of Delanghe et al. [18], the partially averaged Navier–Stokes model of Girimaji [19], and the model of Befeno
and Schiestel [20]. All these approaches have been applied in both simple and complex flows demonstrating the potential of
Speziale’s original idea. It is important to highlight that this formulation is not restricted to act as a near-wall model for LES,
since the transition can occur in any flow region where the grid resolution is fine enough to sustain LES or even DNS
simulations.

Recently, other hybrid formulations have appeared in the literature, such as the zonal [2,21–29] and the blended [30–35]
approaches. In the zonal approach, RANS modeling is implemented as a near-wall model for LES simulations by solving both
models in different flow regions (here, the matching plane or interface between the models is specified arbitrarily). Davidson
and Peng [36] and Tucker and Davidson [23] combined the RANS k�x and k� l models with a one-equation model for the
subgrid kinetic energy (ksgs) to simulate the turbulent flow over a channel, over a ribbed channel, and over a 3 D hill. Their
results showed marked discontinuities in the flow statistics and in the turbulence variables independently of the location of
the matching plane. Hamba [22,29] conducted zonal simulations of channel flows and observed unphysical mismatches in
the flow statistics close to the model interface. He demonstrated that even when LES is conducted in the near-wall region
and RANS in the core of the channel, the zonal approach still predicted unphysical results. He proposed an additional filtering
approach at the model’s interface to correct the errors observed in the flow statistics.

Temmerman et al. [27] implemented the RANS k� � and the k� l models together with the Smagorinsky LES model [37]
to conduct channel and hill flow simulations. They proposed a matching criterion at the model’s interface to control the
amount of modeled turbulent viscosity to reduce the discontinuities predicted in the flow statistics. Davidson and Dahlström
[26] proposed the inclusion of turbulence fluctuations at the interface to reduce the discrepancies observed in previous chan-
nel simulations. Their approach improved zonal predictions for channel flows, however, it required a precursor DNS simu-
lation. Davidson and Billson [28] proposed the inclusion of synthesized turbulence at the interface, and evaluated isotropic
and anisotropic fluctuations in channel flows. Overall, this approach improved the predicted statistics at the model interface.
Similar stochastic forcing approaches have been also proposed in the DES framework by Piomelli et al. [8] and Keating and
Piomelli [11], and in LNS by Batten et al. [16]. Thus, it appears from these studies that the zonal approach when used as a
near-wall model has the potential to reduce the high cost of wall-resolved LES simulations [2]. Nevertheless, this approach
has to be carefully implemented to avoid unphysical predictions when attached flow conditions are simulated. Additionally,
this approach (as proposed so far) lacks a general criterion to specify the location of the model’s interface. This is a critical
issue since (at least, for the models discussed above) the location of the interface can impact the predictions significantly.

In addition to the near wall model approach the zonal RANS/LES model has been also applied to provide inflow conditions
to LES simulations. Georgiadis et al. [21] conducted LES simulations of a compressible mixing layer where the flow upstream
of the splitter was simulated with RANS to reduce the cost of the simulation. A similar coupling strategy by Schluter et al.
[24], was employed for simulations of gas turbine configurations, where the compressor was simulated with RANS and the
combustor chamber with LES. Although this strategy is still considered a zonal hybrid RANS/LES approach, the coupling be-
tween formulations is only through boundary conditions limiting the interaction among the two formulations.

In the blended approach, a hybrid model is constructed by smoothly combining compatible RANS and LES model equa-
tions. This formulation is similar to the zonal approach since the RANS is used as a near-wall model for LES; however, the
transition between models occurs smoothly in a well-defined region. Baurle et al. [32] proposed that any trusted RANS
and LES models containing equations for the turbulent kinetic energy (k) and subgrid kinetic energy (ksgs) could be smoothly
combined to design a single hybrid model equation. They combined a two-equation RANS k�x model and a one-equation
LES model for ksgs to conduct simulations of cavity flows. Xiao et al. [31,33] and Fan et al. [34] implemented RANS k� f and
RANS-SST k�x models with a LES one-equation for ksgs to simulate the flow over a compression ramp. In general, the per-
formance of these models is also encouraging. Nevertheless, significant amount of work has still to be conducted to evaluate
and quantify the effect of the blending function and the turbulence models used in the simulations, even when some of these
issues have been already investigated in the past [31,33]. In principle, there is no reason why only models containing equa-
tions for k and ksgs should be used to construct hybrid blended models. The hybrid blended approach should be presented in a
general form independent of the types of RANS and LES models employed.

In general, very few researchers have developed a theoretical formulation for the hybrid RANS/LES approach [38–41]. In
combining RANS with LES models, most approaches ignore the fundamental differences between the RANS and the LES
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formulations [8,42]. Thus, most reported approaches become engineering methods driven by practical necessity for simulat-
ing high Reynolds number flows with available computing resources. There have been, however, some theoretical attempts
to develop a general framework for the hybrid approach. For example, Germano [39] demonstrated that the governing equa-
tions derived by applying a hybrid filter (created by smoothly combining the RANS and the LES operators) include new hy-
brid terms that should not be neglected. His formal derivation (albeit, restricted to incompressible flows) indicates that
hybrid formulations cannot rely only on the capability of the turbulence models to switch from RANS to LES. However,
he did not apply this approach to any flow problem.

In this paper, we extend Germano [39] theoretical formulation to compressible flow by deriving the unsteady, compress-
ible hybrid RANS/LES N–S equations. The importance of the hybrid terms in the hybrid formulation is assessed by conducting
LES and hybrid RANS/LES simulations for an attached turbulent boundary layer over a flat-plate. Additionally, the effect of
the blending function used in the hybrid filter is analyzed. Finally, the effect of grid resolution in the hybrid simulations is
also investigated.
2. Formulation

The properties of additive filters, constructed by blending two or more independent operators in the framework of com-
putational fluid dynamics were formally described by Germano [39]. In particular, he defined a hybrid RANS/LES filter by
blending the RANS statistical operator and the LES filter operator and went on to derive the hybrid incompressible N–S equa-
tions. The resulting differential equations depend explicitly on the hybrid variables, on the statistically operated, and on the
filtered quantities increasing the number of independent variables. To close the equations, Germano introduced a simple
reconstruction procedure, which in theory allows the calculation of the statistical and the filtered field from the hybrid vari-
ables. Although Germano did not present any numerical results to demonstrate the feasibility of the formulation, we con-
sider that the procedure is fundamentally correct and extend it here to compressible flows.

2.1. Operators

In order to clearly derive the compressible hybrid RANS/LES governing equations a new symbology is introduced to avoid
confusion between formulations. In this paper, RANS, LES, and hybrid operated on a dummy variable (/) are identified as
follows:

RANS variables:
_/; /
_�0;

_~/; /
_�00: ð2:1Þ
LES variables:
€/; /
€�0;

€~/; /
€�00: ð2:2Þ
Hybrid variables:
�/; /0; ~/; /00: ð2:3Þ
We define the RANS operator as a statistical ensemble average together with its Favre (density weighted) representation as
_�/ðxi; tÞ ¼ lim
N!1

1
N

XN

k¼1

/ðkÞðxi; tÞ; ð2:4Þ

_~/ðxi; tÞ ¼
_q/
_�q
: ð2:5Þ
Here, q is density, xi is the space vector, t is time, and N represent the number of realization/experiments conducted for /ðkÞ,
which is a function of time and space. For RANS, the separation of scales is achieved by constructing the unsteady variable (/)
either by using the statistical mean ( _�/) and the unsteady fluctuation (/

_�0) or the Favre mean ( _~/) and the unsteady Favre fluc-
tuation (/

_�00). In this study, it is assumed that the RANS operator satisfies the ergodic hypothesis and the Reynolds rules of
averaging [43]. Thus,
_/þ w ¼ _�/þ _�w; ð2:6aÞ
_�a ¼ a; ð2:6bÞ
_a/ ¼ a _�/; ð2:6cÞ
_

/ _�w ¼ _�/ _�w; ð2:6dÞ

/
_�0 ¼ /� _�/; /

_�00 ¼ /� _~/; ð2:6eÞ
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__�/ ¼ _�/;
_e_~/ ¼ _~/; ð2:6fÞ

_
/

_�0 ¼ 0;
_

/
_�00–0; ð2:6gÞ

_
q/

_�0–0;
_

q/
_�00 ¼ 0: ð2:6hÞ
Here, w and a are another dummy variable and a constant, respectively.
For the LES formulation, a low-pass space filter is implemented to perform scale separation. In general, the LES operator

and its Favre representation can be defined as
€�/ðxi; tÞ ¼
Z þ1

�1
Gðxi � ri;DÞ/ðri; tÞdri; ð2:7Þ

€~/ðxi; tÞ ¼
€q/
€�q
; ð2:8Þ
where €�/ and €~/ represent the filtered and the Favre filtered variables, respectively, and G and D represent the filter kernel and
filter width, respectively.

Similar to the RANS formulation, the unsteady variable (/) is constructed, in the LES formulation, by using the filtered
variables ð/ ¼ €�/þ /

€�0Þ and the Favre filtered representation ð/ ¼ €~/þ /
€�00Þ. However, unlike the RANS operator, which is gen-

eric, the LES operator requires a kernel function (G) and filter width (D) that need to be defined, thus constraining the gen-
erality of the LES operator. In the literature, different LES filters have been proposed spanning explicit and implicit (grid)
filters [40]. Nevertheless, their mathematical properties differ and general properties cannot be easily stated. Here, we only
mention that for most LES filters [40,44] not all the Reynolds rules of averaging apply. The properties that are most com-
monly applicable are
€/þ w ¼ €�/þ €�w; ð2:9aÞ
€�a ¼ a; ð2:9bÞ
€a/ ¼ a€�/; ð2:9cÞ
€

/€�w–€�/€�w; ð2:9dÞ

/
€�0 ¼ /� €�/; /

€�00 ¼ /� €~/; ð2:9eÞ
€€�/–€�/;

€e€~/–€~/; ð2:9fÞ
€
/

€�0–0;
€
/

€�00–0; ð2:9gÞ
€

q/
€�0–0;

€
q/

€�00–0; ð2:9hÞ
where /
€�0 and /

€�00 represent the subgrid fluctuation and the subgrid density-weighted fluctuation, respectively. In this study,
we consider a generic low-pass LES filter with the only restrictions that it commutes with differentiation and with the sta-
tistical operator [39]. That is,
€
o/
oxi
¼ o€�/

oxi
; ð2:10Þ

_€�/ ¼
€_�/ ¼ _�/: ð2:11Þ
Having defined the RANS and the LES operators, a hybrid additive operator and its Favre representation can be constructed
by combining Eqs. (2.4) and (2.7) with a blending function
�/ðxi; tÞ ¼ F _�/ðxi; tÞ þ ð1� F Þ€�/ðxi; tÞ ð2:12Þ

~/ðxi; tÞ ¼
q/
�q
: ð2:13Þ
Here, F is a normalized function that in general, depends on time and space. It is defined as
F : f ðkxik; tÞ 2 ½0;1Þ ! Fðxi; tÞ 2 ½0;1� g. Furthermore, it must have continuous derivatives to at least second-order in
space and first-order in time, i.e., Fðxi; tÞ is a C2ðxiÞ and C1ðtÞ function (this will be evident when the hybrid equations are
derived). Under this hybrid definition, Eq. (2.12) recovers RANS and LES variables when F ¼ 1 and F ¼ 0, respectively. Sim-
ilar to RANS and LES, the unsteady variable (/) can be constructed using the hybrid variables with the standard
decomposition:
/ ¼ �/þ /0; / ¼ ~/þ /00: ð2:14Þ
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Here, the hybrid fluctuations can be easily shown to be related to the RANS and LES fluctuations as
/0 ¼ F/
_�0 þ ð1� F Þ/€�0 ð2:15Þ
and
/00 ¼ F
_�q
�q

/
_�00 þ ð1� F Þ

€�q
�q

/
€�00: ð2:16Þ
It can also be shown that, in general, the hybrid filter equation (2.12) does not commute with differentiation and does not
satisfy all the Reynolds rules of averaging regardless the properties of the constitutive operators. Thus,
o/
oxi
¼ o�/

oxi
þ oF

oxi
ð€�/� _�/Þ; ð2:17aÞ

o/
ot
¼ o�/

ot
þ oF

ot
ð€�/� _�/Þ; ð2:17bÞ

/þ w ¼ �/þ �w; ð2:18aÞ
�a ¼ a; ð2:18bÞ
a/ ¼ a�/; ð2:18cÞ

/�w–�/�w; ð2:18dÞ
�/–�/; e~/–~/; ð2:18eÞ
/0–0; /00–0; ð2:18fÞ
q/0–0; q/00–0; ð2:18gÞ
since
�/ ¼ ð2� FÞF _�/þ ð1� FÞ2
€€�/: ð2:19Þ
Eqs. (2.17) and (2.19) indicate that the hybrid filter does not commute with differentiation, and the application of the hybrid
operator on the hybrid variable does not recover the same hybrid variable, i.e., �/–�/. These are general properties of this hy-
brid operator, and do not depend on the constitutive operators.

The last relevant property of the hybrid operator is related to its ability to reconstruct the RANS and the LES variables if
the hybrid field is known. Germano [39] showed that by applying Eq. (2.4) in Eq. (2.12) and invoking Eq. (2.11), the RANS
variable can be calculated directly from the hybrid variable as
_�/ ¼ _�/: ð2:20Þ

Once the RANS field is known, the LES variable can be obtained by substituting Eq. (2.20) in Eq. (2.12)
€�/ ¼
�/� F

_�/
1� F

: ð2:21Þ
To extend Germano’s original incompressible formulation to compressible flow, the governing equations have to be derived
using the generalized second-order central-moments [44]. This allows us a better representation of the unclosed terms that
appears when we apply the operator in the nonlinear terms. This way, the final equations are invariant with respect to the
operators employed. For the compressible formulation, the generalized second-order central-moments are defined as
_�sða; bÞ ¼ _�qð _fab � _ea _ebÞ; _�vða; bÞ ¼ _ab� _ea _�b; _�fða; bÞ ¼ _ab� _ea _eb; ð2:22Þ

€�sða; bÞ ¼ €�qð €fab � €ea€ebÞ; €�vða; bÞ ¼ €ab� €ea€�b; €�fða; bÞ ¼ €ab� €ea€eb; ð2:23Þ
�sða; bÞ ¼ �qðfab � eaebÞ; �vða; bÞ ¼ ab� ea�b; �fða; bÞ ¼ ab� eaeb: ð2:24Þ
Here a and b are dummy variables and s, v, and f represent, the compressible operators required by the RANS, the LES, and
the hybrid formulation. It is important to highlight that s and f are symmetric operators while v is not. Additionally, both v
and f operators are required to account for the additional nonlinear terms present in the energy equation, and therefore they
do not appear in Germano’s [39] incompressible formulation. By substituting Eqs. (2.12) and (2.13) in Eq. (2.24) the depen-
dency of the hybrid central-moments on the RANS and LES variables can be shown to be
�sða; bÞ ¼ F _�sða; bÞ þ ð1� FÞ€�sða; bÞ þ �q F 1� F
_�q
�q

 !
_�q
�q

_ea _eb � Fð1� F Þ
_�q€�q
�q2

_ea€eb" #

þ �q ð1� FÞ 1� 1� Fð Þ
€�q
�q

 !
€�q
�q

€ea€eb � Fð1� FÞ
_�q€�q
�q2

€ea _eb" #
; ð2:25Þ
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�vða; bÞ ¼ F _�vða; bÞ þ ð1� F Þ€�vða; bÞ þ F 1� F
_�q
�q

 !
_ea _�b� F ð1� FÞ

_�q
�q

_ea€�b

" #

þ ð1� F Þ 1� ð1� FÞ
€�q
�q

 !
€ea€�b� Fð1� F Þ

€�q
�q

€ea _�b

" #
; ð2:26Þ

�fða; bÞ ¼ F _�fða; bÞ þ ð1� FÞ€�fða; bÞ þ F 1� F
_�q2

�q2

 !
_ea _eb � Fð1� F Þ

_�q€�q
�q2

_ea€eb" #

þ ð1� F Þ 1� ð1� FÞ
€�q2

�q2

 !
€ea€eb � Fð1� FÞ

_�q€�q
�q2

€ea _eb" #
: ð2:27Þ
It is trivial to show that these equations recover RANS and LES central moments when F ¼ 1 and F ¼ 0, respectively. Using
the above operator, the hybrid Reynolds stress tensor is constructed by operating Eq. (2.25) on ui and uj: !" #
�sðui;ujÞ ¼ F _�qð _guiuj � _~ui
_~ujÞ þ ð1� F Þ€�qð €guiuj � €~ui

€~ujÞ þ �q F 1� F
_�q
�q

_�q
�q

_~ui
_~uj � Fð1� F Þ

_�q€�q
�q2

_~ui
€~uj

þ �q ð1� F Þ 1� ð1� FÞ
€�q
�q

 !
€�q
�q

€~ui
€~uj � F ð1� FÞ

_�q€�q
�q2

€~ui
_~uj

" #
: ð2:28Þ
It is clear that the compressible generic central-moments in their explicit form include density ratios induced by the Favre for-
mulation that do not appear in the incompressible formulation of Germano [39]. However, it is easy to show (see Appendix)
that for incompressible flow equation (2.28) reduces to the incompressible hybrid Reynolds stress tensor derived by Germano.

2.2. Compressible hybrid Navier–Stokes equations

Having established the required hybrid operators, Eqs. (2.12)–(2.27) we apply them to the unsteady compressible N–S
equations for a calorically perfect gas and Newtonian fluid. The original equations are
oq
ot
þ o

oxj
ðqujÞ ¼ 0; ð2:29Þ

oqui

ot
þ o

oxj
ðquiujÞ ¼

o

oxj
ð�pdij þ sijÞ; ð2:30Þ

oqE
ot
þ o

oxj
ðqujEÞ ¼

o

oxj
j

oT
oxj
þ ð�pdij þ sijÞui

� �
; ð2:31Þ

p ¼ qRT; ð2:32Þ

qE ¼ qCvT þ q
2

ukuk; ð2:33Þ

sij ¼ 2l Sij �
1
3

Skkdij

� �
; Sij ¼

1
2

oui

oxj
þ ouj

oxi

� �
: ð2:34Þ
Here, ui is velocity, p is pressure, l is the molecular viscosity, E is the total energy, T is temperature, R is the gas constant, Cv is
the specific heat at constant volume, j is the heat conductivity, and dij is the Kronecker delta. After some algebraic manip-
ulations, the hybrid compressible N–S equations can be shown to be
o�q
ot
þ o

oxj
ð�q~ujÞ ¼

oF

oxj
½ _�q _~uj � €�q€~uj� þ

oF

ot
½ _�q� €�q�; ð2:35Þ

o�q~ui

ot
þ o

oxj
ð�q~ui~uj þ �pdij � ~sij þ �sðui;ujÞÞ ¼

oF

oxj
½ _�q _~ui

_~uj � €�q€~ui
€~uj þ _�sðui;ujÞ � €�sðui;ujÞ þ ð _�p� €�pÞdij � ð _~sij � €~sijÞ�

� o

oxj

oF

oxj
ð _�l _~ui � €�l€~uiÞ þ

oF

oxi
ð _�l _~uj � €�l€~ujÞ �

2
3

oF

oxk
ð _�l _~uk � €�l€~ukÞdij

� �
þ oF

ot
½ _�q _~ui � €�q€~ui�;

ð2:36Þ

o�qeE
ot
þ o

oxj
�qeE~uj þ �p~uj � �j

oeT
oxj
� ~sij~ui þ �sðE;ujÞ þ �vðuj; pÞ � �v oT

oxj
;j

� �
� �fðsij;uiÞ

 !

¼ oF

oxj

(
_�q _~uj

_eE � €�q€~uj
€eE þ _�sðE;ujÞ � €�sðE; ujÞ þ _~uj

_�p� €~uj
€�pþ _�vðuj;pÞ � €�vðuj;pÞ

� _�j
o

_eT
oxj
� €�j

o
€eT

oxj
þ _�v oT

oxj
;j

� �
� €�v oT

oxj
;j

� � !
� _~sij

_~ui � €~sij
€~ui þ _�fðsij; uiÞ � €�fðsij;uiÞ

� �)
þ oF

ot
½ _�q _eE � €�q€eE� ð2:37Þ
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with the pressure, shear stress tensor, and total energy defined as
�p ¼ �qReT ; ð2:38Þ

~sij ¼ 2�l eSij �
1
3
eSkkdij

� �
; eSij ¼

1
2

o~ui

oxj
þ o~uj

oxi

� �
; ð2:39aÞ

_~sij ¼ 2 _�l _eSij �
1
3

_eSkkdij

� �
;

_eSij ¼
1
2

o _~ui

oxj
þ o _~uj

oxi

 !
; ð2:39bÞ

€~sij ¼ 2€�l €eSij �
1
3

€eSkkdij

� �
;

€eSij ¼
1
2

o€~ui

oxj
þ o€~uj

oxi

 !
; ð2:39cÞ

�qeE ¼ �qCv
eT þ �q

2
~ui~ui þ

1
2

�sðui; uiÞ; ð2:40aÞ
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As expected, the application of the hybrid operator to the N–S equations results in unclosed terms that need to be modeled.
Furthermore, the hybrid operator introduces new terms into the final equations. These terms are
rq ¼
oF

oxj
½ _�q _~uj � €�q€~uj� þ
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½ _�q� €�q� ð2:41Þ

rqui
¼ oF

oxj
½ _�q _~ui

_~uj � €�q€~ui
€~uj þ _�sðui;ujÞ � €�sðui; ujÞ þ ð _�p� €�pÞdij � ð _~sij � €~sijÞ�

� o

oxj

oF

oxj
ð _�l _~ui � €�l€~uiÞ þ

oF

oxi
ð _�l _~uj � €�l€~ujÞ �

2
3

oF

oxk
ð _�l _~uk � €�l€~ukÞdij

� �
þ oF

ot
½ _�q _~ui � €�q€~ui� ð2:42Þ

rqE ¼
oF

oxj

(
_�q _~uj

_eE � €�q€~uj
€eE þ _�sðE;ujÞ � €�sðE; ujÞ þ _~uj

_�p� €~uj
€�pþ _�vðuj; pÞ � €�vðuj;pÞ

� _�j
o

_eT
oxj
� €�j

o
€eT

oxj
þ _�v oT

oxj
;j

� �
� €�v oT

oxj
;j

� � !
� _~sij

_~ui � €~sij
€~ui þ _�fðsij;uiÞ � €�fðsij; uiÞ

� �)
þ oF

ot
½ _�q _eE � €�q€eE� ð2:43Þ
and
r�sða;bÞ ¼ �q F 1� F
_�q
�q

 !
_�q
�q

_ea _eb � Fð1� F Þ
_�q€�q
�q2

_ea€eb" #
þ �q ð1� F Þ 1� ð1� FÞ

€�q
�q

 !
€�q
�q

€ea€eb � Fð1� F Þ
_�q€�q
�q2

€ea _eb" #
ð2:44Þ

r�vða;bÞ ¼ F 1� F
_�q
�q

 !
_ea _�b� Fð1� F Þ

_�q
�q

_ea€�b

" #
þ ð1� FÞ 1� ð1� FÞ

€�q
�q

 !
€ea€�b� Fð1� F Þ

€�q
�q

€ea _�b

" #
ð2:45Þ

r�fða;bÞ ¼ F 1� F
_�q2

�q2

 !
_ea _eb � Fð1� FÞ

_�q€�q
�q2

_ea€eb" #
þ ð1� F Þ 1� ð1� FÞ

€�q2

�q2

 !
€ea€eb � F ð1� FÞ

_�q€�q
�q2

€ea _eb" #
ð2:46Þ
Eqs. (2.41)–(2.43) represent turbulent terms that contribute to the governing equations during the RANS to LES transition
(RTLT) zone. They occur due to the incommutability between hybrid operator and differentiation. Similarly, the hybrid terms
(Eqs. (2.44)–(2.46)) are also only relevant in the RTLT zone and originate due to the nonlinearity of the hybrid central-moments,
and consist of products between RANS and LES variables. In the following, Eqs. (2.41)–(2.46) will be referred to as ‘‘hybrid con-
tributions” or ‘‘hybrid terms” indistinctly. Note that these terms become infinite if the blending function implemented in the
hybrid operator is discontinuous. Therefore, a well defined hybrid formulation requires at least a C2ðxiÞ and C1ðtÞ ‘‘F” function.

The hybrid contributions provide the mechanism that keeps the balance between modeled and resolved scales in the
RTLT zone, where neither RANS nor LES completely models or resolves the turbulence of the flow. In order to demonstrate
this point, let us further analyze the hybrid contributions. To simplify the analysis, Eqs. (2.22) and (2.23) are substituted in
Eqs. (2.41)–(2.43), and additionally it is assumed that the turbulence is only weakly affected by compressibility effects,
which is a valid assumption provided that the fluctuating Mach number is Ma0 < 0:3 [45]. Therefore, all density ratios
appearing in Eqs. (2.44)–(2.46) can be assumed as unity for this discussion. It is also assumed that the implemented blending
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function F is continuous and function of space only, with bounded first- and second-order derivatives. Under these condi-
tions Eqs. (2.41)–(2.46) reduce to
rq ¼
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oxj
½ _�q _~uj � €�q€~uj�; ð2:47Þ
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Eqs. (2.47)–(2.52) indicate that the hybrid contributions are directly proportional to difference between RANS and LES vari-
ables. In order to extract additional information, the RANS and the LES differences can be approximated with the instanta-

neous turbulent fluctuation /_�0 ¼ /� _�/ ¼ Cð€�/� _�/Þ, since €�/! / for D! 0 and
_
/_�0 ¼ Cð

_€�/� _�/Þ ¼ 0. Here, / is the instantaneous
variable and C is an order one coefficient. Therefore, by substituting /_�0 ¼ Cð€�/� _�/Þ in Eqs. (2.47)–(2.52) and assuming C ¼ 1
the hybrid contributions can be expressed as
rq ¼ �
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oxj
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_�0; ð2:53Þ
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r�sða;bÞ ¼
Fð1� F Þ

�q
ðqaÞ_�0ðqbÞ_�0; ð2:56Þ
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Fð1� FÞ
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�q2 ðqaÞ_�0ðqbÞ_�0: ð2:58Þ
Eqs. (2.53)–(2.58) demonstrate that the hybrid contributions represent physical turbulent scales that are not directly ac-
counted by either RANS or LES. Therefore, if Eqs. (2.41)–(2.46) cannot be reconstructed from the hybrid field they have to
be either modeled or prescribed. Here we want to stress that Eqs. (2.53)–(2.58) are just an approximation of the hybrid terms
and serve the only purpose of illustrate the physical meaning of the hybrid terms. Therefore, Eqs. (2.53)–(2.58) should not be
used to compute or model the hybrid terms, here Eqs. (2.53)–(2.58) have to be used instead. It will be shown that the hybrid
contribution plays an important role keeping in equilibrium the transition from RANS to LES, and in compensating the tur-
bulence that RANS does not model and that LES does not yet resolve.
2.3. Time dependent hybrid RANS/LES formulation

Although it will not be pursued any further numerically in this paper, it is worth mentioning the case when the hybrid-
ization is conducted over time, i.e., F ¼ f ðtÞ, which is relevant for LES simulations that are conducted from an initial steady
RANS field:



M. Sánchez-Rocha, S. Menon / Journal of Computational Physics 228 (2009) 2037–2062 2045
o�q
ot
þ o

oxj
ð�q~ujÞ ¼

oF

ot
½ _�q� €�q� ¼ � oF

ot
ðqÞ_�0; ð2:59Þ

o�q~ui

ot
þ o

oxj
ð�q~ui~uj þ �pdij � ~sij þ �sðui;ujÞÞ ¼

oF

ot
½ _�q _~ui � €�q€~ui� ¼ �

oF

ot
ðquiÞ_�0; ð2:60Þ

o�qeE
ot
þ o

oxj
�qeE~uj þ �p~uj � �j

oeT
oxj
� ~sij~ui þ �sðE;ujÞ þ �vðuj; pÞ � �v oT

oxj
;j

� �
� �fðsij;uiÞ

 !
¼ oF

ot
½ _�q _eE � €�q€eE� ¼ � oF

ot
ðqEÞ_�0:

ð2:61Þ
Eqs. (2.59)–(2.61) indicate that the transition from a steady RANS to an unsteady LES simulation is promoted by unsteady
sources that help to trigger instabilities in the flow that will develop into resolved turbulence. Here, we only speculate that
the inclusion of these terms would help to reduce the time it takes for a steady field (used for initialization or used for forced
studies) to develop realistic unsteady turbulence.

Note that for time dependent blending functions equation (2.20) will not be valid if the RANS operator represents a time-
averaged operator, since in this case the blending function will not commute with the time-averaging operator _F/ – F _�/.
Nevertheless, even in this case Eqs. (2.59)–(2.61) are still valid.

2.4. Turbulence modeling

In order to solve the governing equations, the generic hybrid central-moments have to be defined using RANS and LES
equations. For RANS, the closure model implemented at present uses a standard eddy viscosity and a gradient diffusion
assumption:
_�sðuk;ukÞ ¼ 2�qk ð2:62Þ
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Here, k is the turbulent kinetic energy (TKE), m is the kinematic viscosity, mt is the turbulent eddy viscosity, Cp is the heat
capacity at constant pressure, and r� and PrT are constants set to 1=2 and 1, respectively [46]. Similarly, the same assump-
tions are used to construct the LES closures defined as
€�sðuk;ukÞ ¼ 2�qkksgs ð2:66Þ
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Here, ksgs is the subgrid kinetic energy, msgs is the subgrid eddy viscosity, eH ¼ eE þ �p=�q is the total enthalpy, and Prt is a coef-
ficient assumed unity [47]. Finally, model equations for mt , k, msgs, and ksgs have to be defined to close the system of equations.

2.4.1. Hybrid RANS/LES turbulence model
In this work, RANS and LES turbulence models are coupled in the hybrid formulation by blending equivalent RANS and

LES models. Here, we select the two-equation RANS-SST model [48] and the one-equation localized dynamic ksgs (LDKM)
LES model [47] to compute mt , k, msgs, and ksgs since both methods have transport equations for the kinetic energy of the tur-
bulence (k for RANS and ksgs for LES), which are used to design the hybrid model equation. The RANS-SST model is selected
due to its well-documented success predicting complex flows.

An equation for the hybrid turbulent kinetic energy (K ¼ Fkþ ð1� FÞksgs), can be derived formally by merging RANS and
LES transport equations following the same procedure used to derive the hybrid N–S equations. However, this approach
would yield an equation with extra terms that cannot be readily computed, and unlike the hybrid N–S equations, it is not
possible to demonstrate any physical significance for all the additional terms derived in the hybrid model equation. The for-
mal combination of two model equations does not guarantee that the physics of the flow is modeled any better. Here, we
propose a model equation that identically recovers the RANS k and LES ksgs equations in such a way that its structure resem-
bles Eqs. (2.35)–(2.37) without the hybrid contributions. This model equation is
o�qK
ot
þ o

oxj
ð�q~ujK� KTjÞ ¼ KS; ð2:70Þ
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Eq. (2.70) is the model equation for the hybrid turbulent kinetic energy (K). The model equation is constructed by directly
blending the source and the transport terms of the RANS-SST ‘‘k” and the LES ‘‘ksgs” equations. An additional modification is
required in Eqs. (2.63) and (2.67) to eliminate their explicit dependence on k and ksgs. Both turbulence variables are substi-
tuted by K so that
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This additional modification does not alter the original RANS-SST and LES-LDKM equations, which are identically recovered
when F ¼ 1 and F ¼ 0, respectively. The RANS-SST model requires an additional equation for the specific energy dissipation
rate ‘‘x” defined by
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Here, X, F1, and y are the vorticity magnitude, a blending function, and the wall-normal distance, respectively. Here, we
stress that the equation for x is not explicitly hybridized since there is no equivalent equation in the LES model implemented
here. The constants for the RANS-SST model, here represented as w, are computed from two set of constants w1 and w2 as
w ¼ F1w1 þ ð1� F1Þw2. Here, the values of these two sets are: w1frk1 ¼ 0:85; rx1 ¼ 0:5; b1 ¼ 0:075; a1 ¼ 0:31;
b� ¼ 0:09; j ¼ 0:41; c1 ¼ b1=b

� � rx1j2=
ffiffiffiffiffi
b�

p
g and w2frk2 ¼ 1:0; rx2 ¼ 0:856; b2 ¼ 0:0828; b� ¼ 0:09; j ¼ 0:41; c2 ¼

b2=b
� � rx2j2=

ffiffiffiffiffi
b�

p
g [48]. Finally, the RANS and the LES eddy viscosities are defined by
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ð2:76Þ
and
msgs ¼ CmD
ffiffiffiffi
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where
F2 ¼ tanhðg2Þ; g ¼max 2
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500�m
y2x

 !
: ð2:78Þ
Here, Cm and C� are LES coefficients that are obtained dynamically as a part of the solution using a scale similarity approach
[47].

3. Validation of the hybrid RANS/LES formulation

In order to evaluate the importance of the hybrid terms, Eqs. (2.41)–(2.45), LES and hybrid RANS/LES simulations are con-
ducted for the turbulent attached flow over a flat-plate at Reh ¼ 1430, based on the boundary layer momentum thickness (h)
and free stream velocity (U1). These conditions correspond to the experimental data of DeGraaff and Eaton [49]. For this case
the approximate Reynolds number based on the friction velocity is around Res � 500 which is about the same used in a pre-
vious hybrid RANS/LES study conducted in channel flow [22].

The main objective here is to demonstrate the importance of the hybrid terms. Therefore, when needed, these terms are a
priori computed from the LES simulation. Here it is important to stress, that even if in theory the LES field could be computed
with Eq. (2.21) and from it the hybrid terms, it is very likely that Eq. (2.21) could become ill-conditioned, and thus, numer-
ically intractable [39]. Even if Eq. (2.21) converge in all the domain, the LES field could not be correctly recovered since the
grid resolution expected to be used in engineering applications would be too coarse to allow the LES reconstruction. There-
fore, for practical applications the only way to include Eqs. (2.41)–(2.46) is through modeling. However, in this work we are
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interested only to identify and highlight the fundamental importance of the hybrid terms in this hybrid RANS/LES formula-
tion. Therefore, explicit models for Eqs. (2.41)–(2.46) are not discussed but they are currently being pursued.

3.1. Numerical approach

Accurate LES simulations require high order discretization in both time and space. Therefore, the governing equations and
the turbulence models are solved with a parallel code consisting of a fully coupled explicit compressible finite volume for-
mulation, where time integration is conducted using a five stage Runge–Kutta scheme [50] and space discretization uses a
fourth-order scheme in divergence form [51]. Additionally, to prevent spurious numerical oscillations an explicit tenth-order
low-pass filter is applied periodically to the flow variables based on an approach demonstrated earlier [52].

Boundary conditions are applied explicitly for the flow and the turbulence variables. At the wall, no-slip and adiabatic
conditions are imposed. At the free stream boundary, the variables are computed from the one-dimensional Riemann invari-
ants [53]. In the spanwise direction, periodic boundary conditions are implemented, and at the outflow, a zero gradient con-
dition is enforced. For the LES simulation, realistic turbulence is provided at the inflow boundary by using the rescaling
method of Lund et al. [54]. For the hybrid RANS/LES simulations the turbulent inflow is obtained from a LES simulation that
is conducted simultaneously. Here, we did not notice significant differences when the rescaling approach of Lund was imple-
mented in the hybrid field.

Based on previous LES [54] and DNS [55] studies, four grids, summarized in Table 1, extending over a domain of Lx ¼ 10d
(streamwise), Ly ¼ 3d (wall-normal), and Lz ¼ 2d (spanwise) are evaluated. Here, d is the boundary layer thickness. For all the
grids the grid-points are distributed uniformly in the streamwise and in the spanwise directions, while in the wall-normal
direction a hyperbolic tangent stretching is implemented [56]. The benchmark LES simulation is conducted using the fine
grid only to capture the near-wall structures [2], while the hybrid RANS/LES simulations are conducted in the four grids.

3.2. Hybrid RANS/LES blending functions

The LES and hybrid RANS/LES simulations are conducted by solving the hybrid governing Eqs (2.35) and (2.40), the gen-
eric central-moments Eqs. (2.25)–(2.27), and the turbulent hybrid model Eqs. (2.70)–(2.78) with a hybrid blending function
F . For LES, F � 0. However, for the hybrid formulation a general specification of the blending function for different flows
remains an open issue. Fortunately, for the turbulent boundary layer, it is possible to implement simple blending functions
that depend only on the wall-normal distance (thus, principally 1D). Therefore, the sensibility of the model to the blending
function can be evaluated without complicating the problem any further.

Five blending functions, summarized on Table 2, are evaluated. The first and second blending functions are constructed
using a smooth function to transit from RANS to LES [35].
Table 1
Summa

Grid na

Fine
Medium
Coarse
Coarses
FðyÞ ¼ 1
2

1� tanh
C1ðy=d� C2Þ

ð1� 2C2Þy=dþ C2

� ��
tanhðC1Þ

� 	
: ð3:1Þ
Here, C1 and C2 are constants, selected to be 2 and 0:2, respectively. Also, the distance d represents the location at which the
blending function is zero, FðdÞ ¼ 0. The first blending function implements Eq. (3.1) over one-quarter of the wall-normal
length d ¼ Ly=4, so that the boundary layer buffer-layer is within the RTLT zone (this zone is more precisely defined here
as the range where 0:9 < F < 0:1),
F1ðyÞ ¼
FðyÞ for y 6 d ¼ Ly=4
0 fory > d

�
ð3:2Þ
The second blending function is designed to use Eq. (3.1) throughout the domain d ¼ Ly, to set the outer layer within the RTLT
zone, so that
F2ðyÞ ¼ FðyÞ; d ¼ Ly: ð3:3Þ
The third blending function consists of a linear function with limits L1 ¼ Ly=100 and L2 ¼ Ly=3 which bounds a RANS zone
between 0 6 yþ < 20, the RTLT region between 20 6 yþ 6 580 and the LES zone beyond yþ > 580,
ry of grids implemented.

me Number of grid points Grid resolution
nx � ny � nz Dxþ Dyþmin Dyþmax Dzþ

201� 91� 121 30 0:5 63 10
201� 45� 121 30 0:5 147 10
201� 45� 65 30 0:5 147 20

t 151� 25� 65 40 0:5 300 20



Table 2
Summary of hybrid RANS/LES blending functions.

Formulation Blending function RTLT zone Equation

F 0:1 < F < 0:9

RANS 1 Does not apply –
LES 0 Does not apply –
Hybrid RANS/LES F1 8 < yþ < 40 (3.2)
Hybrid RANS/LES F2 30 < yþ < 240 (3.3)
Hybrid RANS/LES F3 20 < yþ < 580 (3.4)
Hybrid RANS/LES F4 50 < yþ < 1100 (3.5)
Zonal RANS/LES F step Discontinuous (3.6)
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F3ðyÞ ¼
1 for y 6 L1

1� ðy� L1Þ=ðL2 � L1Þ for L1 6 y 6 L2

0 for y > L2

8><>: ð3:4Þ
The fourth blending function consist of an exponentially decaying cosine function. This function completes 2:5 cycles
throughout the domain inducing five RTLT zones, the objective is to evaluate the effect of nonmonotonic function which in-
duces multiples RTLT regions in the domain,
F4ðyÞ ¼ e�y=Ly ½cosð5py=LyÞ þ 1�=2: ð3:5Þ
Finally, the fifth blending function consists of a step function, which leads to the classic zonal RANS/LES approach
[2,22,23,25–29]. Here, the interface between RANS and LES is specified at yþ ¼ 45, in order to model the inner layer with
RANS while the outer layer is resolved with LES. This is consistent with past studies [22,26,28,29], the function is defined as
F stepðyþÞ ¼
1; if yþ < 45;
; 0 if yþ P 45:

�
ð3:6Þ
The five blending functions and the law-of-the-wall, are shown in Fig. 1 normalized by wall-units, Uþ ¼ U=us, yþ ¼ yus=m,
where us ¼

ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
is the friction velocity. This figure illustrates how the different transition functions blend RANS and

LES formulations, and more importantly, Fig. 1 shows the location of RTLT zone superimposed in the law-of-the-wall velocity
profile. For F � F1, the RTLT zone is designed to cover most of the inner layer 8 < yþ < 40 to allow LES to resolve part of the
energy produced in the buffer layer. For F � F2, the RTLT zone is located in the outer layer 30 < yþ < 240 to guarantee that
most of the inner layer is modeled with RANS with a well defined RTLT zone. For F � F3 the RANS region is extended up to
yþ � 20 to warrant that most of the near-wall turbulence is modeled with RANS, additionally, the RTLT is designed to cover
the outer layer 20 6 yþ 6 580 to ensure that most of the boundary layer is simulated with the model in the hybrid mode i.e.
0 < F < 1. For F � F4 the RTLT zone extends from yþ ¼ 55 up to the free stream boundary, in addition, this function reach
LES (F ¼ 0) at three locations yþ � 330, yþ � 1000, and yþ � 1700. Finally, for F � F step, the RANS to LES transition point is
located at the end of the inner layer to guarantee that RANS completely model this region, this function does not have a RTLT
zone.
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Fig. 1. Law-of-the-wall profile and hybrid RANS/LES blending functions.
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3.3. Results and discussion

The initial conditions chosen for Reh ¼ 1430 consist of random noise superimposed on the law-of-the-wall profile. This
artificial flow field is evolved using periodic boundary conditions in the streamwise direction to promote transition to tur-
bulence. Once realistic turbulence develop, the flow field is rescaled and then used to initialize the LES and hybrid simula-
tions, it is at this point when the rescaling approach of Lund et al. [54] is used to provide turbulent inflow conditions. All the
simulations are run initially for a nondimensional period of ttransu2

s=mwall � 1000 to eliminate the transient conditions [54].
Here, mwall is the kinematic viscosity evaluated at the wall. After the flow reach a stationary state, flow statistics are collected
for a nondimensional period of taveru2

s=mwall � 1800 [54].
All simulations conducted with the fine grid are summarized in Table 3. The main differences among hybrid RANS/LES

simulations are in the blending function implemented, and whether the hybrid contributions are included (hereafter, de-
noted HRL when the hybrid terms are not considered and HRL-HT when the hybrid terms are included). These terms are
computed from the available LES and its time-averaged fields using Eqs. (2.41)–(2.46). For the coarse grids, the hybrid terms
are still computed from the LES simulation conducted in the fine grid and then interpolated into the coarse grids.

The mean streamwise velocity profiles (normalized with wall-units) and its wall normal gradient are presented in Fig. 2.
Here, the LES prediction is found in excellent agreement with experiments as expected. Interesting to note is that Fig. 2(a)
apparently indicates that for the fine grid, the zonal RANS/LES approach (simulation 2 with F � F step) predicts accurately the
mean velocity profile. This high accuracy of the zonal RANS/LES simulation is explained first by the high resolution used in
the fine grid, and second by the fact that RANS, which is calibrated to predict correctly this kind of flows, completely model
the inner-layer, whereas LES is able to resolve the turbulence located in the outer-layer region. However, if we analyze the
velocity normal gradient, Fig. 2(b), it is evident that the zonal RANS/LES approach predicts an unphysical flow field which is
indicated by the spike located at the models interface (yþ ¼ 45). Here, the anomalous region is bounded within a small re-
gion, in the order of 10 wall-units, neighboring the models interface, set at yþ ¼ 45 for this study. However, as will be shown
later, if the grid resolution is reduced the error region will be significantly magnified [8,22,26,28,29]. This is a well-docu-
mented anomaly observed in all zonal RANS/LES approaches [8,22], and it is due to the abrupt switch from RANS to LES. This
abrupt switch induces a transition from RANS to LES out of equilibrium. Such that the turbulence is neither completely mod-
eled by RANS nor completely resolved by LES [8].

For HRL-HT simulations Fig. 2 demonstrates that the predicted mean velocity profiles are again in excellent agreement
with experiments and the LES simulation. Here, only the line function, simulation 9, presents slight deviations compared
with the other functions. However, here we recall that F3 sets RANS modeling at the inner layer and extends the RTLT zone
throughout the boundary layer completing the transition to LES at the free stream region. Consequently F3 is the most strin-
gent function here implemented since for most of the boundary layer the turbulence model is acting in the hybrid mode
0 < F < 1. Nevertheless, it can be concluded from these results, that as long as the hybrid terms are included the predicted
velocity profiles are not very sensitive to the blending function implemented, even when none-monotonic functions with
multiples RTLT zones are considered. This implies that during RTLT zone, the turbulence that is not modeled by RANS
and is not yet resolved by LES is explicitly accounted by Eqs. (2.41)–(2.46). Therefore, the mean transfer of turbulence
throughout the boundary layer is correctly reproduced, and the transition from RANS to LES in the mean velocity profile oc-
curs nearly independent of the blending function implemented.

Fig. 2 also demonstrate that by not including the hybrid contributions (simulations 3–6) the predicted velocity profile
becomes very sensitive to the blending function implemented. This is explained by the fact that the amount of modeled
and resolved turbulence provided by the hybrid model depends primarily on the blending function. Simulation 3 uses a
blending function that sets the RTLT in the inner layer. Therefore, the turbulence not accounted by the hybrid contributions
is partially resolved by the LES part of the hybrid model, yielding results in close agreement to LES and simulation 7. On the
other hand, simulations 4–6 implement blending functions that set the RTLT deeper in the outer layer, precluding the LES
Table 3
Simulation description and predicted friction coefficient for turbulent boundary layer Rh ¼ 1430, fine grid.

Simulation Blending function, F Cf � 103 Deviation from LES (%)

Experiments – 3.96a –
1 LES 0 4.00 –
2 Zonal RANS/LES F step 3.92 �2.0
3 HRL F1 3.81 �4.8
4 HRL F2 3.44 �14.0
5 HRL F3 3.46 �13.5
6 HRL F4 3.50 �12.5
7 HRL-HT F1 3.77 �5.8
8 HRL-HT F2 3.88 �3.0
9 HRL-HT F3 3.73 �6.8
10 HRL-HT F4 3.94 �1.5

a Obtained by best fitting the law-of-the-wall to the experimental data.
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part of the hybrid model to resolve a significant amount of the turbulence that Eqs. (2.41)–(2.46) represent, resulting in the
underprediction of the velocity profiles in Fig. 2(a).

Table 3 shows the friction coefficient (Cf ) predicted with the five blending functions using the fine grid. In particular, the
friction coefficient computed with LES is found in excellent agreement with the experimental data, previous LES simulations
have reported similar accuracy in their calculations [54]. Consequently, we use this LES results as a benchmark reference to
analyze the hybrid simulations results.

The zonal approach, simulation 2, predicts a Cf in close agreement with LES. This is an expected result, as mentioned be-
fore, since the inner layer is completely modeled by RANS, which is calibrated to reproduce the law-of-the-wall [46,48]. For
HRL-HT, simulations 7 to 10, the predicted frictions coefficients are found within �1:5% to �6:8% error respect to LES. The
difference among HRL-HT simulations is caused by the different blending functions, which indicates that even when the hy-
brid terms are included small variations in the predicted Cf can be reproduced with different blending functions. However,
when the hybrid contributions are not included significant deviations in the predicted Cf are reproduced among blending
functions. Simulation 3 predicts an error with respect to LES (here, the inner-layer of the boundary layer is partially resolved)
in close agreement with the error predicted when the hybrid contributions are included (simulation 7). However, if the
blending function locates the RTLT away from the inner layer the hybrid model is not able to significantly compensate for
the lost turbulence magnifying the deviations in the predicted friction coefficient. For simulation 4 the F2 sets the RTLT zone
in 30 < yþ < 240 inducing an error, with respect to LES, 4.6 times higher that the error predicted when the hybrid terms are
included. For simulation 5 the F3 sets the RTLT zone in 20 < yþ < 580, in this case the error is doubled. Here, we point out
that this apparent good response of F3 to not including the hybrid terms is misleading, since overall the accuracy of Cf pre-
dicted with this function is the lowest for both HRL and HRL-HT simulations. Nevertheless, including the hybrid contribu-
tions with this function does have a positive effect improving the accuracy of Cf . For simulation 6 the F4 induces five
RTLT regions and yield an error about 8 times higher than when the hybrid terms are included, this drastic drop in accuracy
is related with the fact that the multiples RTLT zones make the accuracy of the hybrid formulation more dependent on the
hybrid contributions, thus neglecting Eqs. (2.41)–(2.46) has a major effect in the accuracy of Cf . Here we point out that, the
behaviour previously described is induced only by the turbulent modeling approach here described, since the grid imple-
mented is fine enough for both LES and RANS simulations. However, a similar trend is observed in the predicted Cf computed
with the medium and coarse grids which are not reported here for the sake of brevity.

In order to further elucidate the effect of the blending function and the hybrid contribution in the boundary layer turbu-
lence, the second-order statistics are computed and analyzed. Figs. 3 and 4 presents the resolved Reynolds stresses _qu0iu

0
j=

_�q
and the time average of the modeled Reynolds stresses (here after referred just as modeled) _�sðui;ujÞ= _�q, respectively, while
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Fig. 5 presents the total stresses u0iu
0tot
j ¼ ð _qu0iu

0
j þ

_�sðui; ujÞÞ= _�q (hereafter we use the notation u0iu
0
j to refer the components of

the Reynolds stress tensor indistinctly), for both figures the statistics are computed from the LES and the hybrid RANS/LES
formulation on the fine grid. Here, we point out that for the HRL-HT simulations only a fraction, Eq. (2.44), of the hybrid
terms Eqs. (2.41)–(2.46) can be included in the modeled stresses. Nevertheless, the rest of the hybrid terms play their part
in the governing equations.

As expected, the fine grid allows LES to resolve the near-wall turbulence without any special wall-treatment. Conse-
quently, the LES predictions are found in very-good agreement with the experimental data, as shown in Figs. 3–5, and will
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be used as our benchmark case. For hybrid RANS/LES simulations Figs. 3 and 4 demonstrates the effect that the blending
function has on the resolved and modeled Reynolds stresses. Although it is an expected result, Figs. 3 and 4 demonstrates
that as the RTLT region gets closer to the wall (F4! F1) the levels of modeled turbulence drops while the resolved in-
creases, with or without the hybrid terms. This is explained by the fact that LES takes over the hybrid formulation as the
RTLT zone completes closer and closer to the near-wall region, replacing modeled by resolved stresses.
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Figs. 3–5 indicate that if discontinuous blending functions are implemented, as in simulation 2, the sharp transition from
RANS to LES induces nonphysical discontinuities in the modeled and resolved statistics. Fig. 6 presents the wall-normal
derivative of the total principal Reynolds stress yþou0v 0þ=oyþ (the other stresses present similar trends). The figure clearly
shows, similarly to Fig. 2(b), that only with the step function anomalous profiles, indicated by a spike located precisely at
the model interface, are reproduced. Similar discontinuities have been reported in previous hybrid zonal approaches
[22,8,36]. The discontinuities in the modeled stresses can be also observed in Fig. 4, which shows the sharp drop of modeled
stresses occurring at yþ ¼ 45 when F step is used, while with continuous blending functions the modeled stresses smoothly
transit from RANS to LES with and without hybrid terms. Similarly, when F step is used, the resolved stresses, Fig. 3, also
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present discontinuities. However, they do not go from resolved LES levels to zero at the RANS region as could be expected. In
fact, at the RANS region the resolved unsteady structures are not entirely dissipated as indicated by the low, yet not zero,
levels of resolved turbulence below yþ < 45. This indicates, that for the zonal RANS/LES approach LES feeds in turbulent un-
steady structures, which transform the, otherwise steady, RANS region into a quasi-steady zone. Similarly, nonzero levels of
resolved stresses are reproduced within the RANS region with other blending functions, indicating that the existence of a
quasi-steady RANS field is not exclusive of zonal RANS/LES approaches.

For HRL and HRL-HT simulations Figs. 3–6 indicate that whether or not the hybrid terms are included, the modeled and
resolved statistics do not present any discontinuities in their profiles as long as the blending function is continuous. Figs. 3
and 4 illustrate the distribution of modeled and resolved stresses, which depend on the blending function implemented and
whether or not the hybrid contributions are included. However, for the total stresses, shown in Fig. 5, the dependency on
blending function and hybrid contribution is not that evident and only quantitative differences can be distinguished.

It is important to mention that the total stresses computed with and without hybrid contributions, with the exception of
u0u0, present inflection points and a local minimum at the RTLT zone. The inflection point and local minimum are generated
because the resolved and modeled stresses do not peak around the same location. Fig. 5 indicates that the peaks’s separation
distance is found to be in the order of 100 wall units for all blending functions. For the u0u0 stress, the modeled and resolved
stresses peak around the same location with all blending functions, therefore no local minimum or inflection point is repro-
duced in this stress. It is important to point out that when the RTLT zone is in the inner-layer, F1, the total stresses do not
present any inflection points and local minimum, since the modeled stresses are not that significant when compared with
the resolved stresses, for this blending function. Finally, current results indicate that the local minimum and inflection point
observed in the total stresses, computed with and without the hybrid contributions, cannot be avoided when blending func-
tions with RTLT in the outer layer are implemented.

Fig. 3 shows that for blending functions with RTLT zone close to the inner-layer, F1, the LES part of the hybrid model is
able to resolve a significant amount of the near-wall turbulence yielding resolved stresses in close agreement when the hy-
brid contributions are included or neglected (u0u0 is the only stress that shows slight differences when the hybrid terms are
included). In the other hand, Fig. 4 shows that the modeled stresses reach higher values when the hybrid terms are included
than when these terms are neglected, slightly increasing the total stresses as seen in Fig. 5. Nonetheless, it can be concluded
that for blending functions with RTLT zones located very close to the near-wall region, the effect of the hybrid terms is re-
duced as indicated in Figs. 2–5 and it is expected that their effect become negligible as F ! 0 everywhere. Contrary, if the
blending function locates the RTLT zone in the outer-layer the hybrid contributions become more relevant. Fig. 4 shows that
for blending functions F2, F3, and F4 the hybrid contributions indeed increase the modeled stresses in the RTLT zone. This
demonstrates that the hybrid terms represent modeled scales that should not be neglected. In fact, if these terms are ne-
glected, the levels of modeled stresses drops and the hybrid model is forced to compensate this deficit by resolving more
scales as seen, specially with u0u0 and u0v 0, in Fig. 3. Unfortunately, for RTLT zones deep in the outer-layer, the LES part of
the hybrid model is not able to correctly compensate Eqs. (2.41)–(2.46) yielding levels of resolved and modeled stresses that
differs from those computed with the hybrid contributions, which eventually leads to the inaccurate predictions in the mean
velocity profile and Cf .

Whether, the blending function allows the hybrid model to resolve part of the turbulence contained in the hybrid con-
tributions, these terms cannot be completely resolved by the LES part of the hybrid formulation unless the blending function
reduces to F � 0 everywhere, which obviously reduces the hybrid RANS/LES formulation to LES. Therefore, if Eqs. (2.41)–
(2.46) are neglected and F is not always zero some amount of turbulence, that cannot be resolved nor modeled, is lost.
How much turbulence is not accounted in the hybrid simulations and how this impacts the accuracy of the calculations
strongly depends on the blending function implemented. This is the main reason why the flow statistics predicted with
the five blending functions here implemented (simulations 2–6) differ from each others.

Figs. 7–9 show the effect of the hybrid formulation in the instantaneous velocity field. It presents the velocity fluctuations,
plotted over the spanwise direction, normalized with the free stream velocity sampled at the buffer layer yþ ¼ 11 and at the
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outer layer yþ ¼ 100. As indicated by Fig. 3 and corroborated by Figs. 7–9, for all simulations, the intensity in the fluctuations
are higher at yþ ¼ 11 than at yþ ¼ 100 for the streamwise velocity, while they are higher at yþ ¼ 100 than at yþ ¼ 11 for the
spanwise and wall-normal velocities. However, in all simulations, the wavelengths of the fluctuations are smaller at yþ ¼ 11
than at yþ ¼ 100 indicating the presence of finer structures at the buffer layer. Overall, Figs. 7–9 demonstrate that the dis-
sipation of the turbulent scales, due to RANS modeling, depends on the blending function implemented. At yþ ¼ 11, the high-
est reduction in velocity fluctuations, yet not complete dissipation, is obtained with the functions that set RANS modeling at
the inner layer F2, F3, F4, and F step, whereas F1 simulations predict unsteady structures close to those of LES. This,
strengthen the observation that the turbulent scales, fed in the RANS region by LES, are significantly reduced but are not dis-
sipated entirely by RANS. In the other hand, as the hybrid formulation becomes more dominated by LES, the hybrid simu-
lations resolve more unsteady turbulent content as seen in all velocity fluctuations at yþ ¼ 100. Figs. 7–9 also indicates that
including the hybrid contributions has a positive effect in the unsteady velocities, which are slightly enhanced when the hy-
brid terms are included, due to their unsteady nature as indicated by Eqs. (2.53)–(2.58).

Thus far, the importance of the hybrid formulation has been demonstrated in a grid fine enough to conduct both LES
(wall-resolving) and RANS simulations (solutions are grid independent). Nevertheless, it is pertinent to illustrate, up to some
extent, the behavior of the hybrid formulation when none-wall resolving LES grids are implemented. Due to limited compu-
tational resources only the medium and coarse grids are evaluated with all the blending functions, while the coarsest grid is
evaluated only with the F step and F2 functions which are selected to illustrate the effect of discontinuous and continuous
functions with RTLT zone in the outer layer.

Fig. 10 presents the mean velocity profile computed with all blending functions using the fine, medium, and coarse grids.
The figure indicates that for the blending function with RTLT zone close to the inner-layer, F1, coarsening the grid to none-
wall resolving resolutions, coarse grid, has a negative impact on the mean velocity profile even when the hybrid terms are
included. Since the hybrid model is quickly dominated by LES at the near-wall region where the grid does not allow LES to
resolve the near-wall dynamics. However, when the RTLT zone is in the outer layer, RANS dominates the hybrid formulation
at the near-wall region, thus the effect of reducing the grid resolution is not as negative as in the previous case, as long as the
hybrid terms are included. When these terms are included, the predicted velocity profiles do not change drastically even
with the coarse grid. In the contrary, if the hybrid terms are neglected, a drop in accuracy in the predicted mean profile
is observed for all blending functions. For the zonal RANS/LES simulation, F step, the medium and coarse grids predict results
in close agreement to those obtained in the fine grid, mainly because the near-wall zone is completely modeled with RANS
for this function. However, the velocity profiles still present similar discontinuities (results not shown) as those shown in
Fig. 2(b).

The resolved, modeled, and total Reynolds stress u0v 0, are shown in Figs. 11–13, respectively. The figures demonstrate
that, for all blending functions with and without hybrid contributions, coarsening the grid tends to slightly increase and
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Fig. 11. Grid sensitivity studies for hybrid simulations including the hybrid terms conducted on fine, medium, and coarse grids: (a) resolved u0v 0þ Reynolds
stress and (b) modeled u0v 0þ Reynolds stress.
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Fig. 12. Grid sensitivity studies for hybrid simulations not including the hybrid terms conducted on fine, medium, and coarse grids: (a) resolved u0v 0þ
Reynolds stress and (b) modeled u0v 0þ Reynolds stress.
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decrease the modeled and resolved stresses, respectively. However, the net effect in the total Reynolds stress is not very sig-
nificant. Here, the zonal RANS/LES approach F step is the less sensible to the reduction in grid resolution.

Overall, results obtained with all blending functions in the medium and coarse grids are quite good when the hybrid
terms are included. This responds to the fact that those grids are still fine for hybrid simulations, i.e. the near-wall grid
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resolution is good for RANS modeling and the outer-layer resolution is fine enough for LES. However, if we further reduce the
grid resolution to levels not appropriated for LES, yet good for RANS, the predictions start to present significant anomalies.
Fig. 14 presents the computed mean velocity profile using the fine, coarse, and coarsest grids with the F2 and F step blending
functions. From the results is clear that the coarsest grid is not adequate for LES and consequently hybrid simulations, as
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demonstrated by the significant deviations predicted in the velocity profiles. However, by including the hybrid terms the
mean velocity profile is slightly improved, demonstrating once more that Eqs. (2.41)–(2.46) have a positive effect in the hy-
brid formulation.

Fig. 15(a) and (b) presents the resolved and modeled Reynolds stress u0v 0, it shows a drastic drop in the resolved stress
and an important increase in the modeled stress for the F2 function with respect to the fine and coarse grid results, specially
when the hybrid terms are neglected. The increase in modeled stress at the RTLT zone is induced by the modeled stress com-
ing from LES, which increases as the grid resolution decreases. In the other hand, for the zonal RANS/LES simulation the mod-
eled stress, which is purely RANS below yþ ¼ 45, is virtually grid independent. However, in the LES region the resolved and
modeled stresses drop and increase, respectively, due to the low grid resolution attained in the outer-layer.

The computed total stress shown in Fig. 15(c), shows an important droop at the RTLT zone when the hybrid contributions
are neglected. This occurs because the grid is not fine enough there to resolve the turbulence and the modeled stresses drops
because the hybrid terms are not included. However, when Eqs. (2.41)–(2.46) are included, fair agreement is reproduced
with respect to the fine and coarse grids results, demonstrating once more the importance of the hybrid terms in this
RANS/LES approach. The figure, also indicates that the discontinuities reproduced with the zonal RANS/LES approach are dra-
matically amplified when the grid resolution is significantly reduced, proving that zonal RANS/LES approaches will always
predict nonphysical results and thus this approach should be avoided.

The approximated cost of the simulations (required to obtain statistics for a nondimensional time of taveru2
s=mwall � 1800

using the fine grid) given in single-processor hours on a Cray XT3 machine are the following: (a) Simulation 1 required
around 6800 h, (b) simulations 2–6 required around 13,000 h, and (c) simulations 7–10 required around 15,000 h. Here,
the cost of the hybrid simulations is about twice the cost of the LES simulations because each HRL-HT simulation runs simul-
taneously a LES simulation to provide the turbulent inflow and to explicitly compute the hybrid terms. If an effective closure
model can be devised for the hybrid terms, since it is very likely that these terms cannot be computed directly from the hy-
brid field for general flows, then this cost can be drastically reduced.
4. Conclusion

In this paper, the compressible hybrid RANS/LES N–S equations are formally derived by applying a hybrid additive filter to
the governing equations. The exact hybrid equations contain additional terms which importance is demonstrated in flat-
plate turbulent boundary layer simulations. It is shown that the hybrid contributions, computed a priori from a LES simu-
lation, helps to maintain the balance between the modeled and the resolved turbulence as the hybrid model transits from
RANS to LES. An important observation, for attached flows, is that the hybrid RANS/LES simulations are not very sensitive
to the hybrid blending function, as long as the hybrid contributions are included and the RTLT zone is located in the outer
layer. However, if these terms are neglected, the accuracy of the simulations strongly depends on the blending function
implemented. Additionally, it was demonstrated that under this hybrid formulation, the zonal RANS/LES approach, obtained
by using a step function in the hybrid filter, predicts nonphysical discontinuities in the flow statistics. Further more, these
anomalies are drastically amplified when the grid resolution is reduced. Consequently this approach should be avoided. Cur-
rent results indicate that these unphysical discontinuities can be eliminated by using continuous blending functions together
with the hybrid contributions.

Finally, based on the results here shown, further studies are required to prove that the hybrid terms are also important in
more complex flows, specially when massive flow separation controls the flow dynamics. Additionally, further efforts have
to be directed to develop simplified models for the hybrid contributions to make possible the application of the complete
hybrid RANS/LES formulation in complex flows for engineering applications, without having to use the zonal RANS/LES ap-
proach or defining ad hoc transitions criteria between RANS and LES.
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Appendix. Incompressible hybrid Navier–Stokes equations

Although the incompressible hybrid RANS/LES N–S equations for an additive hybrid operator were first presented by Ger-
mano [39], these equations are repeated and expanded here to highlight the hybrid contributions, and to establish our new
notation. The incompressible formulation is derived from the compressible hybrid approach (described in Section 2) by
assuming incompressibility and by eliminating the energy and the state equations.
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Eqs. A.1,A.2 and A.6 represent the incompressible hybrid N–S equations and the hybrid second-order central-moment. The
explicit expression for the hybrid central-moment is obtained by substituting Eq. (2.12) in Eq. (A.6),
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and by operating Eq. (A.7) in ui and uj, the hybrid Reynolds stress tensor is directly obtained as
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The momentum equation derived here is slightly different from Germano’s original derivation since we keep the definition
for the viscous stress tensor (A.3) while Germano applied continuity to simplify the momentum equation. Nevertheless, it
can be shown that both equations are consistent.

Finally, by substituting Eqs. (A.4) and (A.5) in Eq. (A.2), and the differences between RANS and LES variables with the tur-
bulence fluctuations (/_�0 ¼ /� _�/ ¼ Cð€�/� _�/Þ, with C ¼ 1) it can be shown that the hybrid contributions take the following
form:
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Similar to the compressible formulation, the incompressible hybrid contributions represent turbulence scales and need to be
included.
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